4424 RIBBING, PIERCE, AND SPICER 4

(1970).

35, Tauc, A. Menth, and D. L. Wood, Phys. Rev.
Letters 25, 749 (1970).

g3, C. Moss and J. F. Graczyk, Phys. Rev. Letters
23, 1167 (1969).

23, W. Osmun and H. Fritzsche, Appl. Phys. Let-
ters 16, 87 (1970).

37, Donovan (private communication).

21, M. Donovan, E. J. Ashley, and W. Spicer, Phys.
Letters 324, 85 (1970).

R, V. Koyama, thesis, Technical Report No. 5223-
1, Appendix 1 (Stanford University, (1969) (unpublished).

%p. E. Polk, J. Non-Cryst. Solids 5, 365 (1971).

%R. N. Stuart and F. Wooten, Phys._Rev. 156, 364
(1967).

*H. R. Philipp and H. Ehrenreich, Phys. Rev. 129,
1550 (1963).

BE. 0. Kane, Phys. Rev. 127, 131 (1962).

87, Ballantyne, Phys. Rev. (to be published).

PHYSICAL REVIEW B VOLUME 4, NUMBER 12 15 DECEMBER 1971

Excitonic Theory of Electroabsorption:
Phonon-Assisted Indirect Transitions in Si and Ge'

Binneg Y. Lao, * John D. Dow, and Frank C. WeinsteinI
Joseph Henry Laboratories of Physics, Princeton University, Princeton, New Jersey 08540
(Received 9 July 1971)

The theory of indirect phonon-assisted optical absorption by semiconductors in a uniform
electric field is developed with particular attention being paid to the effects of electron-hole
correlations (excitons). The Coulombic electron-hole interaction is treated within the Wannier-
exciton effective-mass approximation. The physics of indirect electroabsorption is discussed,
and it is found that exciton theory predicts an indirect absorption spectrum which is dramati-
cally different, both qualitatively and quantitatively, from the spectrum predicted by one-elec-
tron theory (neglecting electron-hole correlations). The excitonic correlations are responsible
for four qualitative features found in measured differential electroabsorption spectra but omit-
ted by the one-electron theory: (i) The threshold for optical absorption by excitons lies at a
lower energy; (ii) excitons cause a sharp drop on the high-energy side of the first differential
electroabsorption peak; (iii) the amplitude of the differential absorption is enhanced by excitons;
and (iv) excitonic spectra exhibit longer periods of spectral oscillations. These excitonic ef-
fects are analogous to effects previously predicted for direct transitions. Numerical calcula-
tions of the differential electroabsorption at the indirect edges of Ge and Si are compared with
the data of Frova et al. and are found to be in excellent agreement with experiment.

I. INTRODUCTION

In recent years, modulation spectroscopy® has
become one of the most powerful tools for probing
the electronic states of solids. In the area of
electric field modulation experiments, in which
the spectra are obtained by measuring the re-
sponse of a semiconducting solid to an external
square-wave-modulated electric field, differential
absorption measurements have been reported for
bothdirect- and indirect-band-gap semiconductors. 2
Until recently, the theoretical treatments of elec-
troabsorption data have been limited to the one-
electron approximation, * which neglects the ex-
citonic correlations between the positions of the
optical electron and hole. These correlations,
caused by the final-state Coulomb interaction
between the electron and the hole, lead to the for-
mation of bound and continuum states of the ex-
citon, and significantly change the shape of ab-
sorption spectra from that predicted by one-elec-
tron theory.

The importance of the final-state interactions

on measured spectra was recognized several years
ago, 2 but the theory of electroabsorption has only
recently become sufficiently sophisticated*~® to
evaluate these correlation effects. In this paper
we report the first calculations” to go beyond the
one-electron approximation and to include elec-
tron-hole correlations in the evaluation of the dif-
ferential electroabsorption coefficient at an in-
direct edge. We use these results to analyze the
indirect electroabsorption data for Ge and Si
measured by Frova, Handler, Germano, and
Aspnes. 2

One purpose of these calculations is to test the
validity of the Elliott theory® of absorption by ex-
citons in indirect phonon-assisted optical tran-
sitions. Such transitions in Ge and Si represent an
ideal test of the theory because (i) energy con-
servation forbids many of the broadening processes
that tend to complicate the spectra at higher op-
tical thresholds, (ii) the energy-band structures
are well known for these materials, ® and (iii) the
absorption coefficient is sufficiently small to
guarantee that most of the absorption occurs in the
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bulk of the solid, free of the inhomogeneities
associated with the surface. Our calculations are
compared with the experimental data of Frova et
al.? On the basis of these comparisons we are

able to conclude that the Elliott theory of absorp-
tion by excitons plus a phenomenological broadening
of the theoretical differential absorption curve
Aq(w) are all that are needed to describe the in-
direct electroabsorption spectra in these materials.
Higher-order many-body or local-field correlations
are unnecessary to fit the data and, therefore, are
uncalled for at the present.

The importance of exciton effects on a differen-
tial spectrum is highlighted by the fact that the
measured differential absorption coefficient
Aa(w, F) is a small difference between the finite-
field [a(w, F)] and zero-field absorption coef-
ficients [a(w, 0)]. Therefore, exciton effects
in the zero-field absorption spectrum alone man-
ifest themselves as significant deviations of the
measured spectrum from the predictions of one-
electron theory. As an example, we note that
the zero-field absorption threshold has a 6-func-
tion (square-root) dependence on energy for di-
rect (indirect) exciton transitions at an M, critical
point as shown by Elliott theory, ® in contrast to
the square-root (square) dependence of one-elec-
tron theory. These more abrupt thresholds have
both been observed experimentally. >!! In ad-
dition, we shall see that the electron-hole inter-
action significantly alters the free-electron pre-
diction for finite-field absorption as well, leading
to a theoretical differential spectrum Aa(w) which
is both qualitatively and quantitatively different
from the uncorrelated one-electron spectrum.

The calculations of excitonic indirect electro-
absorption presented here extend the one-electron
theories® of Penchina, Chester and Fritsche, and
Aspnes to include electron-hole correlation; the
computations are complementary to our previous
work'? on the effects of excitons on direct optical
transitions in a uniform electric field. There we
showed that the final-state Coulomb interaction
produced four noticeable differences from the
predictions of the one-electron Franz-Keldysh
theory of differential electroabsorption: (i) The
band-gap energy is noticeably higher; (ii) the zero-
field exitons contribute a dominant negative peak;
(iii) the amplitude of the different signal is greatly
enhanced; and (iv) the periods of spectral oscilla-
tion are longer. Analogs of these four exciton
effects at the direct edge appear in the indirect
spectra. In the related area of differential electro-
reflectance, Weinstein, Dow, and Lao'® showed
recently that a comparison of exciton theory with
experimental data gives an accurate value of the
direct optical transition matrix element in Ge and
leads to a fit which is better than that provided by
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one-electron theory, especially near the band edge
where the differential absorption is strongest and
the parabolic-band effective-mass approximation
is expected to be valid. The present work also
produces excellent agreement between theory and
experiment.

Section II of this paper is devoted to a discussion
of qualitative features that tend to show up in in-
direct electroabsorption spectra as a result of the
Coulomb interaction between the electron and the
hole. Section III contains an outline of the ex-
citon theory of indirect optical transitions using a
second-quantized formalism. Numerical tech-
niques necessary to obtain the calculated spectra
are discussed in Sec. IV. In Sec. V we present
the results and a comparison with experiment;
the discussion of these results is given in terms
of the qualitative features presented in Sec. II.
Qur conclusions are presented in Sec. VI.

II. QUALITATIVE CONSIDERATIONS

Before we deal with the formal theory of dif-
ferential electroabsorption by indirect transitions,
we first point out those qualitative features of
theoretical indirect electroabsorption spectra
which distinguish exciton theory from one-elec-
tron theory. Once the qualitative features asso-
ciated with excitons are understood, it is relative-
ly easy to identify exciton-related structures in
measured spectra; thus the process of fitting
theory to experiment is greatly simplified.

The physics of indirect differential electro-
absorption is contained in Egs. (3. 35), relating
the differential absorption coefficient to the ex-
citon envelope wave function®:

Aa(w)= a(w, F) - a(w, 0)
=23, D,(2M, /r%)*'* [ 20 dE A[| Ug(0)| *S(E)]

X (fw FiQ% - Eg—E)V2, (2.1)
where

A[|U£(0)|2S(E)]= | Ug, £ (0)| 2S(E)
— |Ug,o(0)| 2S(E) (2.2a)

and

Eo=RwThQg, —Eqgp - (2. 2b)

Here D, is the constant defined in Eq. (3. 35b) and
involves the transition matrix element and the
electron-phonon coupling strength. M, is the ef-
fective mass of the electron plus that of the hole
in valence band v; v takes on the values 1 or 2
referring to light- and heavy-mass valence bands,
respectively; Z Qg is the energy of the phonon
responsible for the indirect transition; the upper
and lower signs refer, respectively, to one such
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|ug.r @] siE)

E=fwzfilk, ~Egap

FIG. 1. Illustrating the convolution procedure. An
arbitrary absorption strength [Ugz(0) |2S(E) as a function
of E is plotted (solid line). The corresponding indirect
absorption coefficient o (w) at frequency w, where E|=fiw
FHQZ , — E gy, can be obtained by convoluting |Ug(0) 1%S(E)
with the square-root function (E,—E)!/? (shown as the
dashed line on the figure).

phonon created or absorbed in the optical absorp-
tion process. E,,, is the energy gap between the
top of the valence band and the minimum of the
indirect conduction band; S(E) is the density of
internal-motion states of the exciton; and Ug (0)
is the wave amplitude at the origin of the electron-
hole envelope function, thus Ug r(T) solves the
hydrogenic relative-motion Schrodinger equation
of the exciton

h—z 2 e2

-_— Ve—— - =
(zu < epz> Up. £ (F)= EUg £ (F) .

(2.3)
Here u is the reduced mass of the electron and
hole, €, is the static dielectric constant, F is the
applied electric field (assumed uniform and di-
rected along the z axis), e is the electron’s charge,
7 is Planck’s constant divided by 27, and E is the
internal energy of the exciton. The symbol A in-
dicates the change induced by application of an
external electric field F as shown in Eq. (2. 2a).

Equation (2. 1) also holds without the A symbol,
thus we have

. - 3/2 'E
a(w,F):Z)D,,<2EMz—"-> f°dE{UE,F(o)|Zs(E)

X(rwF Qg — Egap — E)Y2 | (2.4)

It is very easy to understand the basic physics
of this equation. |Ug, £(0)I2S(E), henceforth re-
ferred to as the absorption stvength, is the prob-
ability of finding the electron and the hole in the
same unit cell multiplied by the density of states.
When the exciton has energy E in its relative
(internal) motion, the rest of the energy of the
absorbed photon Zw 7 Qg — Egq, — E is available
for center-of-mass motion of the exciton. From
phase-space considerations, the density of states
provided by the center-of-mass motion is just

(2m, /m?*/ z(h’w?-iiﬂﬁm ~Egp-E)V/?.

Equation (2.4) immediately follows. The convo-
lution procedure by a square root is illustrated
in Fig. 1.

Before we discuss the difference in a(w) in-
duced by a finite field F, it is instructive to in-
vestigate the behavior of the derivatives of a(w, F)
with respect to photon energy and field, evaluated
at zero applied field. This is done in the Appen-
dix. In contrast with one-electron theory (which
predicts a square-root absorption strength, a
quadratic indirect absorption, a linear energy
derivative 6a/dw, and an exponential small-field
derivative 6a/0F), exciton theory predicts an
absorption threshold behavior dominated by the
1s exciton d-function absorption strength, square-
root indirect absorption, singular inverse square
root 6a/8%w, and singular first derivative 6a/6F —
all a result of the quadratic Stark shift of the 1s
exciton. Some of these results are plotted in
Ref. 15. Thus the excitons dramatically alter the
nature of the small-field indirect electroabsorp-
tion spectrum near threshold.

For larger fields, 16 Aa(w) can no longer be
easily evaluated in terms of its derivatives, and
furthermore the Stark broadening of the exciton
lines becomes more important than the Stark shift.
Thus it is necessary to evaluate Aa(w) as the
finite difference between finite- and zero-field
absorption. We have

Ao(w)=a(w, F)-a(w, 0) .

The main qualitative features of indirect absorp-
tion spectra a(w) and differential spectra Aa(w)
result from structure in the absorption strength
|Ug,¢(0)I2S(E), and can be easily understood in
terms of Eq. (2.1). In Fig. 2 we have plotted the
absorption stvength |Ug £(0)|2S(E) and the dif-
ferential absorption strength A[|Ug £(0)1%S(E)] for
a barely ionizing field (the reduced field is unity;
i.e., f=1, where f= |e| Fa/R and the 1s exciton
radius and binding energy are a and R, respec-
tively). Four effects on the excitonic absorption
strength which are not in the one-electron theory
are immediately obvious: (i) The first negative

6 function in the exciton spectrum of |Ug, £(0)12
S(E) lies lower in energy than the first negative
peak in the corresponding one-electron spectrum.
As a result of this, the exciton theory predicts a
lower energy threshold for the onset of differential
absorption strength. (ii) The bound 1s exciton
state is responsible for a large negative 6 function
in A[|UZ(0)|2S(E)]. (iii) Significant enhancement
is caused by the Coulomb interaction both below

E =0 (bound states) and above (continuum states

of the exciton). (iv) Exciton theory yields a larger
period of spectral oscillation in A[|Ug(0) [2S(E)]
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FIG. 2. One-electron and exciton theoretical optical
absorption strength and differential absorption strength
Al UE(0) IZS(E)] for a reduced field of f=1. The zero-field
line without excitons is not plotted, but is a square-root
curve about which the Franz-Keldysh curve oscillates.
The differential absorption by excitons is not plotted for
negative E since it is the difference between |Ug, ¢(0) 12.S(E)
and the sum of § functions: '35 (an)~*6(E +R/n%. How-
ever, the total absorption strength by field-perturbed ex-
citons, scaled down by a factor of 10, is plotted for E <0
along with the first few zero-field exciton lines (dotted).
Note that the total oscillator strength under the field-
perturbed and field-free curves for E <0 differ by only a
few percent for f=1. The excitonic differential absorp-
tion for E <0 actually joins continuously to that for E >0.
Recall f= |e |Fa/R.

than one-electron theory. (The effect is most
obvious if the one-electron theoretical curve is
moved to lower energy so that its first positive
peak matches up with that of the exciton theory.)
The four exciton effects on the differential ab-
sorption strength A[|Uz(0)12S(E)] give rise to the
following features in the differential indivect ab-
sovption spectrum Aa(w) (see Figs. 3 and 4): (i)
The threshold for absorption lies as lower energy.
(ii) The bound-exciton 6-function peak is converted
to a square root [in contrast with one-electron
theory’s milder quadratic threshold for a(w, 0)
(see Fig. 3)] by the convolution Eq. (2.1); thus
Aa(w) has a sudden drop associated with the zero-
field exciton on the right-hand side of the first
positive peak. (iii) The smoothing process [Eq.
(2.1)] preserves the excitonic enhancement in the
differential absorption. (iv) The larger period of
spectral oscillation of the absorption strength per-
sists after the convolution. These four features
of differential indirect absorption spectra are not
present in the one-electron Franz-Keldysh theory;
but when these exciton effects are added to the
one-electron theory, the discrepancies between
theory and experiment are removed (as we shall
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see in Sec. V).

The Coulomb interaction between the electron
and the hole is responsible for all four of these
qualitative differences from one-electron theory:
(i) The attractive Coulomb potential provides low-
er-energy states for optical absorption, and there-
fore shifts the absorption threshold to lower energy
by approximately one exciton Rydberg (R). (ii)

The nth bound-exciton state in zero field contrib-
utes to Aa(w) an amount

-2, D,(2M, /1% 2*nRa®) (Eq+ R/n®)Y 2 .
(2.5)
This abrupt square-root behavior is to be contras-
ted with the milder quadratic contribution of free-
electron theory:

-23,D,(2M, /5%¥ 3(321Ra%) " (E,)? . (2.6)

(iii) The Coulomb interaction attracts the electron
to the hole, increasing both the probability [U(0)|?
that they are found together and the absorption
strength. (iv) The interaction of the electron

with the hole causes the electron to feel that it is
in an effective field F, larger than the applied
field F—this larger field is responsible for the
prolonged period of spectral oscillation. In order

—— With excitons, f=1.
-—— Without excitons, f=1.
------ With excitons, f=0

20+

a (w) (arbitrary units)
)
T

s s | 1

-2 o] 2 4

ou : Il

E=(hw ¥ BQK;‘Eqap)/R

FIG. 3. Absorption coefficient a(«) for indirect transi-
tions is plotted for the exciton theory and the one-electron
theory (dashed line). The dotted line is o (w) for exciton
theory with zero applied field; the solid line is for a re-
duced field of f=1. The field-induced difference in o (w)
for one-electron theory is too small to be shown here.
Note the difference in the threshold position and the large
enhancement effect due to the Coulombic exciton interac-
tion. The sudden rise above — 1 Rydberg on the zero-field
exciton curve is due to the 2s exciton bound state.
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-2 ) 2 4 6
E=(hw ¥ hQy -Egqp) /R
FIG. 4. Differential absorption coefficient for indirect

transitions Awc(w) is plotted here for exciton theory (solid
line) and one-electron theory (dashed line). The branch
labeled “x10”” should be enlarged tenfold so that the discon-
tinuity near + % Rydberg actually does not exist. Notice
that the exciton theoretical curve, in general, lies lower
in energy than the one-electron theoretical curve.

to understand this last argument, we must recall
that one-electron theory predicts a period of os-
cillation which is proportional to F?/3; and we
note the heuristic argument depicted in Fig. 5,
where the electron’s wave function emerges from
the classically forbidden barrier region and is
accelerated to the left-hand side by the applied
field and the Coulomb force. As the electron is
accelerated toward the hole, it sees an average
potential which might be characterized by a larger
effective uniform field F, .

In Sec. V we shall see that these qualitative
features due to excitons are responsible for the
discrepancies between one-electron Franz-Keldysh
theory and differential absorption data at the in-
direct edges of Ge and Si.

III. FORMALISM

In this section we derive the central expression
Eq. (2.1) for the differential optical absorption
coefficient Aa(w, F) using modern techniques and
notation, and we make the connection between the
present calculation and previous work. Where
possible, we adhere to the notation introduced by
Ralph* and followed in previous papers. &2

The starting points for the calculation of
Aa(w, F) are the expressions relating the absorption
coefficient a(w) to the imaginary part of the dielec-
tric function €,(w)
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a(w) = [w/en(w)]ey(w) , (3.1)

and the linear-response-theory formula for €,(w)
in the dipole approximation®

€ (w)= 4Llim <Z} ePEi >_1 2 ePEi
i

2
w7V 3.0 i

% |(i|€- (@) f)|2 60w -E,+E,) . (3.2)

Here n(w) is the index of refraction for a photon
of energy 7%w, c is the speed of light, V is the
volume of the solid, B=(kgzT)"!, kg is Boltzmann's
constant, T is the temperature of the solid, € is
the unit polarization vector of the absorbed photon,
and J(§) is the complex Fourier transform of the
current operator.® The exact initial and final
eigenstates of the interacting electron-phonon
system, with energies E; and E;, are |7) and
If), respectively. In order to evaluate €,(w), we
must first determine suitable approximations to the
initial and final states.

The Hamiltonian for the interacting electron-
phonon system is taken to be

H=H,+H,+H,,=H,+H,, , (3.3)
where the phonon Hamiltonian is
(1Bz)
H’=E nQg,al ag,, (3.4)
;')‘ kX

the electron Hamiltonian is

—— EXCITONS
-—-NO
EXCITONS

------- "AVERAGE
POTENTIAL"

FIG. 5. Wave function U(z) for a continuum state (E >0)
and potential V(z) along the direction z of the applied field
associated with uniform applied field plus electron-hole
scattering (i.e., excitons), denoted by solid lines. The
“average potential” associated with the larger effective
field f, is denoted by a dotted line. Here f= |e|Fa/R and
f«=lelFya/R.



4 EXCITONIC THEORY OF ELECTROABSORPTION: ...

(1Bz) .
He=Zz e (K)cken (3.5)
n,k
and the electron-phonon interaction is taken to be
linear in the atomic displacement

(1Bz)
He :N-l/z E g(k7 A,nyn’)(a;x_a-fl)

g
'
Tnyn

¢+ H.c. (3.6)

t
X Cngg Cn

Here a.kf)L and ag, are boson creation and destruction
operators for phonons of energy ii Q3. , phonon
branch A, and wave vector k; €,(k) is the nth en-
ergy band; c,f; and c,; are fermion creation and
destruction operators for an electron in the nth
energy band €,(k); g(k, X, n,n’) is the electron-
phonon coupling; the symbol H.c. means Her-
mitian conjugate; and (1Bz) over a summation
symbol means k and q are restricted to the first
Brillouin zone.

In the initial electronic state all the single-par-
ticle electron states in the valence band are filled
and the conduction band states are empty; in the
indirect absorption final electronic state, there
is a hole near the center of the zone and an electron
near one of the o equivalent minima I_(',,,(m =1.+.0)
in the conduction band. !” The final electronic state
has crystal momentum K=~ ff,,, compared with the
initial states K= 0 and the photon’s negligible (on
the scale of the Brillouin zone) momentum; thus
wave-vector conservation forbids the purely elec-
tronic transition, and the indirect transition in
the perfect crystal is phonon assisted. Thus, to
first order in the electron phonon interaction, the
initial state is

L 1% (I°1H
i)~ [0y -2 —vfﬁ—

1#0

(3.7

where |0) is the product of the zero-order ground
electronic state |0)) times a phonon state
Iny, g .. - ]: We have

|0>:10>>In1yn29-..], (3-8)
where
(1Bz) (aI )
|ny,npyen.]= (“ [0,0,...]. (3.9)
£,
The zero-order initial state energy is
(1Bz)
E}= 20 ni B . (3.10)
kK,

If interband (n#n’) scattering is neglected® [i.e.,
gk,x, n,n')= Gn,nlg(i, A, n)] in the electron-phonon
interaction[Eq. (3.6)], the exclusion principle pre-
vents scattering in the filled valence bands. Hence
we have
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(I°|H,,]0)=0 (3.11)
for all / and
|i)=10). (3.12)
The final state has energy
EL=E%+hw (3.13)

and, to first order in the electron-phonon interac-
tion, is

ll°><l°IHe5|f2> ’

3.14)
El_Efi (

FARINAEDY
1#f
where |f9) is a product of |f°)) (a superposition
of electron-hole pairs) of total wave vector K multi-
plied by a phonon state In,, ny,... (#xx1)...],
whose wave vector is greater than the ground-state

wave vector by — K. We have
cmgxl). .. ]

’f(:): |f0>> ‘"1: Ny, .

%)) can be written as'®

(3.15)

( )

U,Q 6x(d-k) cf;

-
[+
1)

2,07

|f°>>=% | 0)) , (3.16)

-

where

Q=M"Ym Kk +m,q) (3.17)

is the wave vector for the electron-hole relative
motion and § -k is the wave vector for the center-
of-mass motion. (Note that the motion of the hole
is time reversed.) Here we have assumed that
there are two relevant valence bands v correspond-
ing to light and heavy holes, and one conduction band
c. The momentum-space wave functions for the
center-of-mass and relative motions, respectively,
of the exciton are ©z(k) and U,(k), where

oz ) = N2 Dgoox(RY e ¥ ¥, (3.182)
U,&) = N2 Tz0 U,RY) e B4 (3.18b)
They are normalized such that
(1B=z) (1Bz)
|6 (k) |2 = |U,,(E)]2=% . (3.19)

The volume of the crystal is V; the quantum num-
bers labeling the center-of-mass and internal states
of the system are K and v, respectively. In the ef-
fective-mass approximation, Oz(R)= V-1 2¢i '}

and U,,(R) solves the hydrogenic Schrodinger equatlon
for an exciton in a uniform electric field (; and z
are operators)

- - e? -
<€c(k) -af)- 5 - er) U, -E, U,®).

(3.20)
So the unperturbed final electronic state is
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PR,
(3.21)

Combining Egs. (3.8), (3.12), and (3.14) we find,
to lowest order in the electron-phonon interaction,

(1B2) >

- m,K

) Uu(k+ —-"—"jw )lem g |00
k

@€. I@|n

5 01€-F(@1°) @ 1H,, 1 £

] (]
1#£,0 Ey-Ey,

(3.22)

We first expand the intermediate exciton state
[1°), which is similar to |f,) in Egs. (3.15) and
(3.21), and obtain

1

|4
N

Q-0

Here we have taken the photon wave vector q,
which is negligibly small on the scale of the Bril-
louin zone, to be zero. To facilitate the sum in
Eq. (3.26) we expand the momentum matrix el-
ement in powers of ’ about zero. Since the vir-
tual direct transition to the intermediate state is
allowed, we retain only the zeroth-order term in
the expansion

BE(0)=52,(0)+ @’ - V)BL(0) g0+ -+ . (3.27)
By the identity

(1BZ)

2, U'@=N"2U'F=0), (3.28)

q

Eq. (3.24) becomes

lim (0| € J@)|1% =< vV2¢. 52,(0) U'(F=0
20 m cv
P

The electron-phonon matrix element can be ob-

2 VNY2yiE=0)

. = e 1/2 A -
tim (0] & @0 -% (X)"'D v@e e 5loa
q
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[19 =110 |ny, ng, ... R (3.23)

Nk 5 o
where
(IBz)

n=(%)" z o (8 ) e e 0 -

(3.24)
The current matrix element can be evaluated
using the second-quantized representation of the
current operator

J@=2 2 (e, k+a|B o,k clrzen (3.25)
k

and the exciton states |1°) to give

12 . e
el (%) 2 U'@)< G-0). (3.20

r

tained from Eqs. (3.6), (3.15), (3.21),
and (3. 24):

(3. 23),

(|, |10y - L 2 U( 7’;——) (rg+3x 32

x [0 &)g(®, 2, ¢, c)

Vl
N
+UNER +R)g®, 2, 0,0)] . (3.30)

The transition matrix element in Eq. (3. 22) can
be written as

. ~ 3 e 74 1/2 Ve
1;33(0|<-J(6)|f,)7(7) (ragrded)

XUV('fzo)_pe&%G(_K_ ,

where we used Eq. (3.28) on final state U, and

(3.31)

(3.29) made the assumption that the sum over ! depends
weakly on k so that
1
U™ &) g®, 2 ¢ c)+U'*(K+E)g(K A 0,9) _G(K)
E0,— EV =2Ag0 - (3.32)
E

I,2

Note that G(K)=T,[g(K, ), ¢, ¢) +g(K, A, v, v)] if the
decoupled electron-hole states 3.3 ¢ l2 ¢ ,210))
were used for the intermediate state [I°)). The
imaginary part of the dielectric function can now
be obtained from Eq. (3.2) where the sum over
final state f and the 6 function are converted into
the operator

oV 2M
(2m) 2 2 ( —ﬁ_z_L

+

XS(E)rwF iR, ~ Eg—E)2 x , (3.33)

where o is the total number of equivalent conduction
band minima, M, is the sum of the effective masses
of the electron averaged over the ¢ minima and

the hole of band v, Eg=fiwFiQg, —Eg,, and S(E)

is the final exciton internal density of states. We
have also assumed that the phonon dispersion is flat

near Em. Thus we have
2 3/2 £ Eo
oe“V 2M,
=2y T (5 ) f “®
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X (iw N, ~ Eep—E)'?

X |Ug,r(0)|2S(E) , (3.34a)

where
D,=|€-p%(0)G(K,)/AEY| 2 (nsx, +5£3) .
(3. 34b)

Here we made two of the internal quantum numbers
v explicit, namely, the exciton energy E and applied
field F. The change in optical absorption coef-
ficient Aa is from Eq. (3.1):

_ 3/2 [ By
Aa(w)=2s Du< i‘l_]g]”) / dE

X (ﬁw;ﬁm{m—'Ezu_E)lla

xA[|U(0)|2S(E)] , (3.35a)

where

ce?v
V= TR

3. 350
ZweT (N D, ( )

IV. NUMERICAL CALCULATION

In this section, we outline the numerical pro-
cedures used for calculating the differential elec-
troabsorption coefficient Aa(w). The starting point
of a calculation of Aa(w) is to evaluate A[| Uz(0)]2
xS(E)] in Egs. (3.35) by solving the relative motion
Schrdédinger equation with and without an applied
electric field F:

L v2 < F )U (F)=EUg ¢(r). (4.1)

<_2u Ter eFz|Ug p(r)=EUg g . .
In the absence of the applied field, the hydrogenic
equation can be solved analytically to give the
well-known Elliott absorption strength as*

E +R/n?

2 -5 O
| Ug ,£-0(0) [S(E) = %1 n(an)

+6(E)[2nRa*(1 - e'z’(R/E)l/z)]_1 , (4.2a)

where a = €,72/ué is the first exciton Bohr radius,
R=¢%/2¢,a is the exciton Rydberg, and 6(E) is the
unit step function. The sum over discrete states
in Eq. (4. 2a) yields the contributions to the ab-
sorption strength by the bound excitons; and the
second term is the continuum states’ contribution.
Note that the two terms join continuously at E=0
at the finite value 1/27Ra®. The absorption
strength is, in general, larger in value than the
familiar (E/R)'/2(47°Ra® "', which is predicted by
one-electron theory in the absence of Coulomb in-
teraction from the evaluation of the density of states
alone. This one-electron expression is zero at
E=0 and is always less than the exciton result,
even at energies far above the band gap, as can
be seen by an expansion of the second term of Eq.
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(4. 2a) for large E:
[20Ra¥(1 - ¢ ¥ (R/P/2)]1
- (E/R)I/Z (4#2Ra3)'1

+(47Ra®) 1 +O[(R/E) /%] . (4.2b)

Here O(x) means that terms of order x have been
omitted. In addition, we also notice that the bound
excitons shift the absorption threshold to lower
energy by an amount approximately equal to the
Rydberg R. As we shall see later, these effects
persist also in the presence of an applied electric
field.

The only remaining piece of information necessary
for obtaining the differential absorption strength
AllUg(0)I128(E)] is | U, £(0)1%S(E), the absorption
strength in finite applied field. The evaluation of
Ug,(0) for nonzero F has been discussed in full
detail in Sec. I and Ref. 6, where it has been shown
that an exact numerical solution of the effective-
mass equation (4. 1) is required for two reasons.
First, perturbation expansions in powers of the
electric field strength or in powers of the Coulomb
interaction diverge for physically interesting field
strengths. Second, since the differential strength
A[lUL0)13S(E)] is the small difference® between
the two large numbers | Ug (0)12S(E) and
|Ug,0(0)12S(E), any relative error in |Ug 7(0)|3S(E)
will lead to an order-of-magnitude larger relative
error in A[|Uz(0)I2S(E)]. Most approximation
schemes are not capable of the accuracy required
in order to permit quantitative comparison of theory
with experiment. These unfavorable conditions
make an intermediate coupling theory desirable.

At the current stage of the theory, only direct
numerical integration of the Schrédinger equation
satisfies such requirements.

Our computation of Aa(w) was done in two steps:
First, the absorption strength | Uz, £(0)|2S(E) was
obtained numerically by solving Eq. (4.1) in the
usual fashion. *~® Since the exciton system in the
applied electric field has no bound states, the ab-
sorption strength |Ug, £(0)|%(E) is smooth with broad
peaks reminiscent of the § functions in Eq. (4. 2).
Second, Aa(w) was obtained by numerically con-
voluting A[|Uz(0)I13S(E)], the difference between
| Ug, £(0)1%3S(E) and | Ug,,(0)I%S(E) # in Eq. (4.2),
with the square-root function as in Eqgs. (3. 35).
The convolution must be done with extreme care
because a small error on the low-energy side of the
absorption strength is greatly amplified by the
square root in the convolution (see Fig. 1). To
avoid systematic errors in integration, the end of
one of the Gaussian quadrature intervals was set
at E=0 so as to coincide with the discontinuity of
the step function in Eq. (4.2). The sum over # of
the & functions was done exactly for » > 20 and the
remainder was approximated, to second order in
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derivatives with respect to », by means of the
Euler-McLaurin summation rule.?? In order to
check the accuracy of the numerical procedures,
we simply turned off the Coulomb interaction in

I
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our numerical routines and then compared our cal-
culated values of absorption strength and Aa(w)
with the well-known analytic Franz-Keldysh formu-
las®:

1/3 1
2 _f 2/2(_ 2_py L slizg )
al|Ug(0) | S(E)] W(At (-£)+LAP(=0) — ¢ (£)) (4.3)
and
. (o2M\YE (3 PARRYR | , N _
Ba(w)= T Du( ﬁ;) 2f321ra3 Ai-0) —zaicn) e | Aitax- o0 ¢ (4.4)
—
where values are to be compared with the experimental
E HwFhQR. —E resolution of 0.5 meV. The broadening was per-
¢= RFEE £=22R —9;—R—§-ﬁ——m— , formed after A[] Uz(0)|2S(E)] had been convoluted
s Y with a square-root function; the order of per-
and (4.5) forming convolution and broadening is irrelevant.
R ipes duced
f= le‘ Fa/R . During the fitting procedures we kept the reduce

Values of A[| Ug(0)I%(E)] calculated numerically
agreed with those evaluated analytically to better
than 1%, depending somewhat on the magnitude of
the reduced field f. The square-root-function con-
volution procedure was tested by calculating

Aa(w) using Eqs. (3.35) and (4. 3) for A[|Uz(0)1?
XS(E)]. The result thus obtained was checked
against the corresponding spectrum gotten from

Eq. (4.4); the agreement was better than 1%. These
two tests eliminated any large sources of systematic
error in the calculation. When computing Aa(w),
with the Coulomb interaction included, we elected

to alter by less than 0. 1% the absorption strength

| Ug, r(0)1%S(E) obtained by numerically solving the
Schrédinger equation (4.1). By doing so, we were
able to significantly reduce our computational ex-
penses by merely forcing the final Aa(w) spectrum
to oscillate about zero at photon energies well above
threshold. An analysis of this correction scheme!®
showed that the procedure did not alter the shape

of the calculated spectrum, its magnitude, or the
periods of spectral oscillation; the errors in Aq are
comparable with the thickness of the plotted line in
Fig. 4.

V. RESULTS AND DISCUSSION

Using the methods discussed in Sec. IV, we have
calculated the differential electroabsorption coef-
ficient Aa(w) for indirect transitions to bound and
continuum exciton states in Ge and Si and have com-
pared our calculations with the experimental results
presented by Frova, Handler, Germano, and
Aspnes. ? Our results are shown in Fig. 6 for Ge
and Fig. 7 for Si. The curves were Lorentzian
broadened® with I'=1.55 meV for Ge and I'=2.0
meV for Si to achieve best visual fit. ® These

effective mass constant while changing the field
strength so as not to affect the exciton Rydberg. %2
The reduced effective masses for heavy-hole ex-
citons were taken? to be 0. 17m, for Si and 0. 14m,
for Ge, where m, is the bare electron mass.
Transitions due to light holes were neglected be-
cause the mass factor M, in Eqs. (3. 35) makes
their contribution small.?" A least-squares fitting
attempt, varying the relative sizes of light- and

0.08}- 3
I
{' .
Aa I
o . ° !
e THEQRY (WITH EXCITONS)
r — — — THEORY (NO EXCITONS)
* LA EMISSION
I LA ABSORPTION } EXPERIMENT
-0.08 A%
T g
-R L e 0
—
| I .A”D' GAP | 1
-0.010 0.0 0.010 0.020

hw-"Eqap'thQ 4 in eV

FIG. 6. Differential electroabsorption coefficient
Aa (in cm™!) for indirect transitions in Ge at 296 °K. The
abscissa is photon energy minus “E;”=0.6657 eV plus
or minus the longitudinal acoustical phonon energy (the
curves for absorption and emission are superposed).
The experimental points (Ref. 2) are denoted by dots
(emission) and bars (absorption). The best unbroadened
one-electron fit (Ref. 2) is denoted by a dashed line and
the present (exciton) theory is denoted by a solid line.
The present theory obtains f=0.872, E,,=0.6701 eV, and
T=1.55meV in contrast to the values f=0.744 and E,,
=0.6595 eV of the one-electron theory.
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FIG. 7. Differential electroabsorption
coefficient Aa(in cm™!) for indirect transi-
tions in Si at 296 °K. The abscissa is pho-
ton energy minus “Eg’=1.1117 eV plus or
minus the transverse optical phonon energy
(the curve for absorption and emission are
superposed). The experimental points are
denoted by circles (emission) and crosses
(absorption). The fit of exciton theory is
denoted by a solid line. The present theory
obtains f=0.3898, Eg,=1.1260 eV, and
T'=2.0 meV. The effective reduced mass
was taken from Ref. 2 to be 0.17m, with
an applied field F=1.808 x10* V/cm.

.02 " 04 06
hw- qup' t B\QT()(EV)

heavy-hole contributions, showed that the light hole
in Si accounted for less than 5% of the Aa(w) spec-
trum. The final fitted values for the fields F were
1.114x10* and 1.808x10* V/cm as compared with
the experimental values of 0.95x10* and 1.4x10*
V/cm for Ge and Si, respectively.

By comparing the one-electron and exciton the-
oretical fits to experimental data in Figs. 6-8 we
notice that the exciton fits are superior in four re-
spects: (i) The exciton theory predicts a larger

06

04

02

(em™)

-02

°o TO EMISSION

-04 x TO ABSORPTION

08

band gap than one-electron theory. In order to get
agreement with experiment, one-electron theory
has to artificially shift the indirect gaps to ener-
gies lower than “E,,,” by 6.2 meV in Ge and 5.7
meV in Si (as compared with exciton binding en-
ergies of 7.64 and 16. 896 meV). The discrepancy
between one-electron theory and experiment is
even greater (10.5 and 23.1 meV), as we shall
show, because the values of “E.,,” seem to be un-
realistically smaller than the actual band-gap

Si INDIRECT TRANSITIONS

FIG. 8. Differential electroabsorp-
tion coefficient in Si at 296 °’K. The
solid line denotes the fit of one-elec-
tron theory with £=0.3021, or, equiv-
alently, for the measured field of
F=1.4x10* V/cm and a fitted effective

ONE-ELECTRON  reduced mass p=0.18m,.
THEORY

f=0.3024

i EXPERIMENT
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x FIG. 9. Differential electroabsorp-
CE, ° tion coefficient in Si at 296 °K. The

(em™) < x %o 00 %00, solid line denotes the fit with one-
or . TN e T o e electron theory at f=0.3898 or,

° ° equivalently, F=1.808x10% V/cm,

x which is used for the fit with exciton

e th in Fig. 7.
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energies. (ii) Exciton theory reproduces the abrupt 4R below the band edge®; this change in Aa(w) may

decrease of Aa(w) immediately after the first posi-
tive peak in each spectrum. (iii) The matrix ele-
ment necessary to obtain an accurate fit to the first
peak of each spectrum is smaller for exciton theory
than for one-electron (0.588/%/A and 0.158%/A vs
0.187%/A and 0. 3347%/A for Si and Ge, respectively)
theory—hence bound and continuum excitons enhance
the differential spectra. (iv) Exciton theory pre-
dicts a longer and more accurate period of oscilla-
tion for Aa(w). The value of reduced field f used in
the exciton fits is somewhat larger than f used in
the one-electron fits; however, this increase in f
accounts for only a fraction of the increased period
(as may be seen by comparing Figs. 7-9). These
qualitative changes in the theoretical spectra brought
about by the final-state Coulomb interaction between
the electron and the hole are just those exciton ef-
fects discussed in Sec. II.

These four qualitative exciton-related features
of indirect differential absorption spectra lead to
a few useful rules of thumb for fitting experimental
spectra: (i) The sharp drop in Aa(w) after the first
peak is due to the 1s exciton and, therefore, the in-
direct band gap lies approximately (due to broad-
ening)® one exciton Rydberg above the drop. (ii)
The 2s exciton state lies between the indirect gap
and the 1s exciton, giving a contribution of

- /2M.\3/2
2 b, (#) (Bw F7Q%g ~ Egap+ 3R/

to Aa(w); in the Si data (Fig. 7) there is a barely
visible decrease in slope of Aa(w) at an energy

be due to the 2s exciton. (iii) For zero broadening
('=0), the contribution of the 1s exciton to Aa(w)
is responsible for an abrupt square-root drop on
the high-energy side of the first peak; thus, the
nonabruptness of this drop in experimental spectra
gives a rough measure of the size of I'.

In addition to the qualitative information contained
in differential absorption data, there is considerable
quantitative information. Perhaps the easiest and
most reliable quantity which can be extracted from
a spectrum is the energy E,,, of the indirect band
gap, which is one of the parameters of the fitting
procedure. In the case of Si and Ge, the values of
Egqp —R are wellknownfrom the work of MacFarlane,
McLean, Quarrington, and Roberts, 11 whose data
can be extrapolated quadratically to a temperature
of 296 °K. In Table I the values E.,,, extracted
from the data of MacFarlane ef al., are compared
with the numbers for E,, obtained by the exciton
fit (present work) and the one-electron fit? to the
electroabsorption data; values of the heavy-hole
exciton binding energies, reduced masses, and
static dielectric constants are also listed in Table
I. Note that the excition fit produced values of E
in very good agreement with the independently
measured values.

A second quantity which can be extracted in prin-
ciple from the fit of theory to data is the matrix
element which determines the strength of the in-
direct transition. However, the interplay between
thermal broadening parameter I' and the transition
strength makes it difficult for the fitting procedure

gap
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TABLE I. Values of the indirect band-gap energies E,, heavy-hole exciton Rydbergs R, heavy-hole exciton reduced
masses p, and the static dielectric constants €.

Egy (ineV)
Exciton One-electron R®
Substance Measured* theory® theory® “Egp”? (eV) p/myt €
Ge 0.6700 0.6701 0.6595 0.6657 0.00764 0.14 15.8
Si 1.1291 1.1260 1.1060 1.1117 0.01689 0.17 11.7

tion data (Ref. 2).

*Quadratically extrapolated from the data for Eg,— R
taken by MacFarlane et al. (Ref. 11), using a heavy-hole
Rydberg R.

bpresent work, values extracted from fit to electroab-
sorption experiment (Ref. 2).

°Reference 2, values extracted from fit to electroabsorp-

to determine the value of the transition matrix ele-
ment precisely, for an increase in I" reduces the
heights of the differential absorption peaks in a
manner which can be compensated for by increasing
the matrix element. Thus, at present, the largest
impediment to an extremely precise theory seems
to be the absence of an accurate independent de-
termination of the energy-dependent broadening.

In spite of these difficulties, we have extracted
estimates of the effective momentum matrix ele-
ments p = € - p2,(0)G(K,,)/AE from the theoretical
fits, and have obtained values of 0.0588%/A and
0.1587%/ A for Si and Ge, respectively.

Finally, the exciton reduced mass can be ex-
tracted from the theoretical fit if the applied field
F is both spatially uniform and accurately known,
and if the broadening function I" is known as a func-
tion of energy. Uncertainties concerning the value
of I' and its variation with energy led us to use the
cyclotron-resonance masses as input for our cal-
culations. However, based on our experience with
Si and Ge, we believe the theory of excitonic elec-
troabsorption may now be sufficiently advanced so
that only the problem of determining the broad-
ening function I' prevents the accurate determination
by electromodulation experiments of effective
masses, band gaps, matrix elements, and energy
band structure, in general.

Thus far we have found that the exciton theory ex-
plains the major discrepancies between one-electron
theory and experiment, and that it provides access
to quantitative information about energy gaps, ma-
trix elements, effective masses, and electron-pho-
non interactions. However, the present work fails
to accurately fit the amplitudes of high-energy os-
cillations of the Si electroabsorption data. Further-
more, the present work succeeds in fitting data at
the indirect edges of Si and Ge, even though calcula-
tions of direct electroabsorption in these materials
found significant discrepancies between theory and
experiment which were ascribed to nonuniform elec-
tric fields.

The failure of the present work to adequately de-

4Values of E g, used in Ref. 2.
®R=13.605eV p/ed.
fReference 2.

¢Reference 30.

scribe the high-energy oscillations in Si is prob-
ably due to two effects: (i) The experiment, as
performed, does not measure the finite difference
between absorption coefficients at finite field and
zero field, but instead it measures a quantity closer
to the derivative of the absorption coefficient at a
finite field.%® (ii) To a lesser extent, the disagree-
ment between theory and experiment can be partially
remedied by increasing the theoretical broadening

I' and the transition matrix element, thereby in-
creasing the amplitude of the high-energy oscilla-
tions relative to Aa(w) near the bound-exciton
spectral region.

The fact that the present calculation of the in-
direct differential absorption coefficient in Ge
yields excellent agreement with experiment while
previous calculations of direct transitions in Ge
failed to achieve agreement with similar experi-
ments can be explained by the following two con-
siderations. (i) The square-root convolution [Egs.
(3.35)] is a smoothing process which may tend to
average out some of the effects of nonuniform fields.
(ii) The absorption coefficient at the indirect edge
of Ge (~4 cm™) is about 20 times weaker than the
absorption coefficient at the direct edge (~100
cm-!). Thus the absorption occurs in the bulk of
the sample and surface effects which lead to non-
uniformities in the applied electric field are less
important in indirect transitions.

V1. CONCLUSIONS

Calculations of the differential electroabsorption
coefficient for indirect optical transitions reveal
that excitons are responsible for qualitative fea-
tures in experimental spectra which were not ac-
counted for by one-electron theory. In addition,
the fits of exciton theory to experimental data for
Ge and Si yield quantitative information about en-
ergy gaps, matrix elements, and effective masses.

At present, the greatest impediment to the de-
velopment of the theory of electroabsorption seems
to be a lack of a quantitative a priori knowledge of
broadening mechanisms; thus, future theoretical
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effort should concentrate on the effects of broad- X (HwFEQg =~ Egy) - (A3)
ening processes and inhomogeneous fields® on

electromodulation spectra. Once those effects are In a finite field F, Franz-Keldysh theory gives®?
quantitatively understood, extensive calculations

of the sort described here promise to expose many | U, £(0)|2S(E)

of the secrets of band structure hidden in electro-

absorption spectra. Thus electromodulation spectra = (F"/3/4n ka®|Ai"% (- £) + LAP(- ©)] (Ada)
may eventually yield valuable quantitative informa-

tion about the effects of electron-electron and elec- = (4rR¥/22%)19(E)EY2[1 - (2¢%/%)1 sC
tron-phonon interactions on optical spectra.

3

3)-1(10 _ -9/2
APPENDIX: DERIVATIVES OF « (w,F) + (487110 - 175 + 0t )]

In one-electron theory for zero applied field, + (1672R/ 243! 6(— E)| E|1/2 o~#1%1%/2/3
|Ug 4(0)12 is a constant (the relative-motion en-
velope function is a plane wave) and the density of x [(21 ¢ | 3/2)-1 _ 1'7/(48| ¢ | O O(| ¢ | -9/2)] .
states is proportional to
1/2 (Adb)
| Ug,(0)| 25(E) = (f/I;) (A1) Here we have
i £=E/®F*), (A5a)

The square -root dependence of the absorption
strength gives an indirect zero-field absorption f=lelFa/R, (A5b)
coefficient via Eq. (2.4) which is quadratic in Zw:
a. (2.4) a ¢ C=cos(3¢%2+10), (A5c)
= (2M,)%2 /2 3y-1
alw,0)=2 D, ?-“ (327 R3/24°%)" and
' —ain(2r8/2,1
X (iwF M9, = Egy)? (A2) S=sin(3¢%' % +47m) . (A5d)
The unit step function is 6(E), and O(x) means that
o2 terms of order x have been omitted.
sa(w, 0) -3 5v< 2M, ) (167 R3/24%) The one-.electron mdlregst absorption coefficient
6hw N 7 has been given by Aspnes,

and

J

3/2 )
a(w, F)=v2 D, (%) (821a®) (3 )% 3R”2<Ai(— £) - A=)+ zZ[lAi(x) dx) (A6a)

- [2Mm\3/2
=D, (Fl) (327 R%/24%)1E2 [9(50)<1 +Z:?1’7 £9/4sin(3£%/2 4 §y) - 46(2)%75 g-3/%cos(283/2 4 ﬁ))

21¢18/2 41 B 25 - -
+0(= Ey)e 21 ¢l /3<96111 . |£| 9/4_9216171 5 ‘EI 15/4) +O(|£‘ 21/4)]_ (A6Db)

Here ¢=E,/[R(f/2)¥?] and Ey=Fw FnQx, — Eg,. Thus, just below the absorption threshold, one-electron
theory predicts

sa(w, F) - (20 \3/2 ) 3/2
_GF_‘___=? Dq,»(_ﬁfl) [gsnRa/a (%f)l/S] 1 |e|Eoe—2|€| /3

41
X(sen‘“ Flel=rs I‘E’m)”ﬁg?m(‘f 1£l'““+|£|'5“)>. (A7)

In exciton theory, the corresponding quantities salw, 0) - (2m B2
near the absorption threshold are I =ZD"< 72 > (2ra®)" (Bo+ B2, (A10)
| Ug,0(0)|2S(E) = (1a®) 6 (E + R) , (A8) | Ug, (0)|2S(E)=(na®) 6 (E + R+ 2R) , (A11)

3/2
a(w, 0)=El.),,(2—;2/1-"> (na®) 1t (Eq+R)V2,  (A9) alw, F)=22 ﬁ,,(—zé\gd-“f/a(ﬂas)‘l (Ey+ R+%2R)'2, (A12)
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sa(w, F) 2MN'%(9lelf /2
oF ? (—#) (W) (E0+R+%—feR) .

(A13)

Thus, excitons completely modified the one-elec-
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tron shape of the derivatives of a(w, F) and alter
the indirect differential electroabsorption aa(w),
which for small fields F is

Aa(w)-%l; F+-
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This paper describes an experiment on electron tunneling through »n-type InAs-oxide-Pb
junctions and discusses in detail two results which are pertinent to the quantization of an ac-
cumulation layer at the InAs surface. First, the tunneling curves dI/dV vs V and dI/dV? vs V
show structures reflecting the energy minima of two-dimensional electric subbands. The bias
position of these structures gives a direct measure of the energy of the quantized levels.
Second, when a quantizing magnetic field is applied perpendicular to the junction surface, os-
cillations are observed in the tunneling curves. These oscillations reflect the Landau-level
spectra of electrons in the electric subbands. They give a direct measure of the effective mass

of the surface electrons.

I. INTRODUCTION

In an accumulation or inversion layer of a semi-
conductor surface, if the electric field associated
with the surface layer is sufficiently strong, the
energy due to a carrier’s motion normal to the sur-
face is quantized into discrete levels. Since a con-
tinuum of energy is allowed for motion parallel to

the surface, the energy structure of the surface
carrier is a series of two-dimensional bands called
electric subbands, each corresponding to a quan-
tized level. The existence of these two-dimensional
conducting states, predicted by Schrieffer, ! was
experimentally confirmed by Fowler ef al.? several
years ago using surface magnetoresistance measure-
ments on the n-type inversion layer of a {100} sili-



